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LIQUID CRYSTALS, 1989, VOL. 5, No. 3, 839-846 

Many-wave optics of blue phases 

by V. A. BELYAKOV and V. E. DMITRIENKO 
All-Union Surface and Vacuum Research Centre, 117334, Moscow, U.S.S.R. 

A theory of many-wave optics of cholesteric blue phases is developed. The 
solution of the phase problem (i.e. the determination of the relative phases of the 
Fourier harmonics of the blue-phase order parameter) by means of many-wave 
diffraction is discussed. In the framework of many-wave blue-phase optics, the 
experimentally observed intensities of the Kossel lines are described. It is shown 
that the (1 1 1 )  and (200) Bragg reflections, observed in BPII, may be caused by 
coherent multiple diffraction. 

1. Introduction 
Optical methods are widely used to study liquid-crystalline blue phases (BPs) 

with their three-dimensional periodicity of the order parameter [ 1-31. A detailed 
theory of BP optics is now available [2 ,  4, 51, but some observed features remain 
unexplained. The most challenging problem is the existence of Bragg reflections with 
unusual polarization properties, which contradict the well established BP structure 

Here it is shown that the properties of the unusual reflections find their natural 
explanation in the framework of the many-wave theory of BP optics. Moreover, 
many-wave optics gives a practical method for a solution of the phase problem [13]: 
the relative phases of the Fourier harmonics of the BP order parameter can be 
obtained by means of optical measurements under the conditions of many-wave 
diffraction. This method is similar to the method of the solution of the phase problem 
in the case of multiple X-ray diffraction [14]. Note that consideration of many-wave 
effects may be also essential for the description of diffraction-induced birefringence 
and optical rotation in BP [15]. 

[6-121. 

2. Basic equations 
To begin, we discuss the general description of many-wave diffraction. It is well 

known that in BPs (as in any periodic medium) a plane wave is not a solution of the 
Maxwell equations. The proper solution is given by the Bloch wave, i.e. by the 
superposition of the plane waves: 

E(r, t )  = exp [ i (k ,  - r - wt)] 1 E, exp (iz - r), 
r 

where r are the reciprocal lattice vectors, k, is the wavevector, o is the frequency, and 
E, are the amplitudes of the partial waves. The Bloch waves (see equation (1)) are 
excited inside the BP crystal by an incident wave with wavevector IC,, which becomes 
k, after refraction at the crystal surface. We can consider equation (1) as a result of 
diffraction of the incident wave of amplitude E, into an infinite number of diffracted 
waves of amplitudes E, and with wavevectors k, = k, + z. Inserting equation (1) 
into the Maxwell equations, we obtain an infinite set of equations for the partial 
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840 V. A. Belyakov and V. E. Dmitrienko 

amplitudes E, 

where T = 0, t,, t2, t3, . . . , k, = k, + z, K: = (U/C)’, E, is the average dielectric 
constant of the BP, and I, are the (tensorial) Fourier harmonics of the BP dielectric 
constant (0, are also the Fourier harmonics of the BP order parameter [2, 41). 

An approximate solution of equation (2) can be found from a truncated set of N 
equations for those N amplitudes E, for which the wavevectors k, satisfy or approxi- 
mately satisfy the Bragg condition (see equation (3)). In general, the solutions of the 
N equations can be found only with the aid of a computer. However, some qualitative 
features of many-wave diffraction are evident without any calculations. Because of the 
amplitudes in equation ( 2 )  are mutually connected, the diffracted wave (say, E,) can 
be excited both directly and indirectly via many-wave diffraction (the excitation via 
many-wave diffraction is called umweganregung [14]). Thus the amplitude E, has the 
qualitative form 

where A and B are some coefficients. Two effects of many-wave diffraction are evident 
from this equation. First, the intensities and polarization properties of the diffracted 
waves should depend on the phases of the triple products 0: - 2,-,, - 0,. (i.e. on the 
relative phases of the Fourier harmonics); as a result, the polarization selection rules 
[2, 41 may be violated. Secondly, the diffracted wave can be excited, even if direct 
diffraction is absent (ZT = 0 or very small). 

3. Many-wave diffraction conditions 
To decide how many partial waves are important in equations (1) and (2), we 

should find those z that satisfy (at least approximately) the Bragg condition 

tz + 2 k 0 * t  = 0. (3) 
N-wave diffraction takes place if N - 1 different reciprocal lattice vectors ( r , ,  r2 ,  
. . . , tNPI) satisfy equation (3) simultaneously. Because of the high symmetry of the 
BP cubic lattice, the conditions for many-wave diffraction are satisfied rather regularly. 
Note that there is a threshold (maximum wavelength) for many-wave diffractions; this 
may be used to discriminate between many-wave effects and two-wave effects. We 
shall present some examples of many-wave diffraction in BP without going into 
calculational details. 

For BPII (02 space group) many-wave diffraction is possible if the light 
wavelength (inside the BP crystal) satisfies the inequality I < I,, ,/J2 = aJ2, where 
a is the period of the BPII lattice and A,,, is the maximum wavelength for two-wave 
diffraction. If k, is parallel to the [110] direction and I = a J2 then four-wave 
diffraction occurs: z, = (1 lo), z2 = (loo), t3 = (010). If 1 = 2a/J3 and k, is parallel 
to the cubic space diagonal ([I 1 I ]  direction) then eight-wave diffraction occurs: 

For BPI (0’ space group) the many-wave conditions can be satisfied if 3, < +A, ,,,/3, 
where Al l ,  = a J2 is the maximum wavelength for two-wave diffraction in BPI). 
Note only two cases: 1 = a and k, 11 [loo] (six-wave diffraction); 3, = a &  and k, II 
[211] (three-wave diffraction). 

Ti = ( I l l ) ,  (loo), (OlO), (OOI), (IlO), (Oll), (101). 
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As the analysis of equation (2) shows, the partial amplitudes E, are comparable 
to the amplitude Eo of the incident wave even if the Bragg condition is satisfied only 
approximately. Namely, I E,I x I E,I if the parameter CI, = (z’ + 2k, - t ) /k i  is suf- 
ficiently small: I a, I 5 E,,  where E, is a typical value of the local dielectric anisotropy 
in the BP (usually, 1 E, 1 = 0.1-0.01). If I a, 1 9 1 E, I then the amplitude E, is small in 
comparison with E,: I E, l/l E, 1 x I E, 111 CI, 1. 

4. Many-wave diffraction for two strong waves 
Many-wave effects can be described analytically if we assume that there are only 

two strong waves-the incident one E, and the diffracted one E,-and that the others 
(the intermediate waves) are weak, but not negligible (the conditions limiting this 
assumption are given later). With this assumption, an approximate solution of the 
many-wave set of equations (2) may be found from effective two-wave equations for 
E, and E,. To obtain the two-wave equations, the amplitudes of the weak waves, Ew , 
should be determined approximately from equation (2) as functions of the strong 
amplitudes E, and E,: 

1, * E, - K-2k,(k,. 1, * E,) + C-,  * E, - K2k,(k, * 1,-, * E,) , (4) E, = 
Eo a, 

where I C ~  = K ~ E , ,  k, = k, + w, w is the reciprocal lattice vector of the intermediate 
(weak) wave (the analogous approximation has been used earlier [15, 161). The 
approximation in equation (4) is valid if 1, and 1,-, are small in comparison with 
E ~ O L , ,  i.e. if the intermediate waves do not satisfy the Bragg conditions. Inserting 
equation (4) into equation (2) for E, and E,, we can find the effective two-wave 
equations 

(here I is the unit tensor), where the many-wave corrections A1,, to the Fourier 
harmonics are given by 

, (6) 
O,, Ow-,, - K - ~  (&, * k,) 0 (k, * 1,-,,). Alp, = 1 

W EOaw 

in this equation p, n = 0, z and w # 0, t, the symbol 0 denotes the outer (tensor) 
product of two vectors). Note that in the general case, the many-wave corrections A& 
are asymmetric complex tensors with non-zero traces. The correction Ago, is respon- 
sible for the many-wave birefringence, which has been discussed for two-wave diffrac- 
tion [2, 5, 161 in connection with optical rotation in BPs. 

It is possible to find the specific expression for AO,,, if the restrictions on 1, and 
1,-, known from theory [2, 4, 171 and experiment [l, 9, 161 are taken into account. 
Namely, just one tensor mode (with m = 2 or m = - 2) gives the main contribution 
to the largest Fourier harmonics (see [2,4,9]). If we take into account only this mode 
(e.g. with m = 2) then the Fourier harmonic 1, can be written as 

1, = E(W, 2)m, 0 m,, (7) 
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842 V. A. Belyakov and V. E. Dmitrienko 

where E(W, 2) is the mode amplitude, m," = (m,, - im2,)/J2, and the unit vectors 
m,,, m,, and w/l w I form a right-handed triad. Inserting equation (7) into equation 
(6),  we obtain 

(rnp-w o m,-,)E(p - w, ~ ) E ( w  - n, 2) imp-, mw-" - K '(k, - mp-w)(kw. m W - J  

(8) 

This expression shows that usually the mode with m = 2 is present in the A& (with 
the exception of those cases where this mode is forbidden by symmetry; for cubic 
structures this mode is absent only for exact backward diffraction along the three-fold 
or four-fold rotation axes). 

AS,, = 
w &O@w 

5. Forbidden reflections 
It is very important for BP structural investigations that there are the many-wave 

corrections to those coefficients in equations ( 5 )  that connect Eo and E,. This is the 
reason for the excitation of forbidden reflections for which gZ is zero or very small. 
Therefore observation of the forbidden reflection is not a decisive argument in the 
determination of the BP space group. To clarify this question, we should determine 
whether the reflection is excited far from the many-wave diffraction conditions. As an 
example, we consider the (1 1 1) reflection in BPII. For symmetry reasons the Fourier 
harmonic PI, ,  contains only one tensor mode with m = 0 [4], and for two-wave 
diffraction this reflection should be weak and achiral[2]. However, for nearly back- 
ward diffraction eight-wave diffraction occurs and the polarization properties of the 
(1 1 1) reflection become rather unusual. 

While under the exact eight-wave Bragg conditions the equations ( 5 )  are not valid, 
there are nearby angle regions where only the Eo and El,, amplitudes are strong, and 
equations ( 5 )  may be applied. Using equations (8) and (5 ) ,  we can calculate the ratio 
of the scattering amplitude for right-hand polarized light into right-hand polarized 
light to the scattering amplitude for left-hand polarized light into left-hand polarized 
light. For nearly backward diffraction this ratio coincides with A&( 1 1 1,2)/A~( 1 1 1, - 2). 
For every individual many-wave channel (say, 00ljl lo), this ratio may be estimated 
from 

where * denotes the complex conjugate. It is clear from this result that the many-wave 
contribution to (1 11) nearly backward diffraction is strongly chiral. However, exact 
backward diffraction is an exception. In this case the right-hand polarized wave 
diffracts only into a left-hand polarized wave and vice versa. Such polarization 
properties of exact backward diffraction can be obtained both from symmetry con- 
siderations (for n-fold rotation axes with n 2- 3) and from specific calculations (see 
[8], where the cancellation of the individual chiral terms was demonstrated for the 1 1 1 
exact backward diffraction). Nevertheless, for real experimental conditions, even a 
small deviation of the beam from the [l 111 direction destroys the cancellation of 
individual chiral terms. Thus the observed predominant [9] scattering of beams with 
circular polarization (for (1 1 1)  backward reflection) can be explained by the small 
deviations from the [l 111 direction (as small as the angular widths of the reflection 
bands of intermediate waves). 
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Many-wave optics of blue phases 843 

Figure 1 .  Calculated azimuthal dependences of the angular widths of (a) (200) and (b)  (1  1 1 )  
reflections in BPII. The corresponding Kossel diagrams are also shown (the angular 
widths are shown for (200) and (1 11) reflections only). 

The simplest way to discriminate between many-wave and two-wave reflections 
consists in the examination of the azimuthal dependence of the intensity and polar- 
ization properties of the reflections during crystal rotation around z. The many-wave 
diffraction depends strongly on the azimuthal angle cp (see figure 1) because the 
many-wave Bragg conditions (see equation (3)) are met at definite values of cp, while 
the two-wave diffraction depends very smoothly on cp (if it depends on p at  all). For 
perfect BP crystals the azimuthal dependences of the angular widths of (200) and (1 11) 
reflections are given approximately by 

The experimentally observed Kossel lines for the (200) and (1 1 1) reflec- 
tions have azimuthal dependences (similar to those in figure 1)  with a steep 
growth of linewidths at the points of many-wave diffraction [18]. These azimuthal 
dependences confirm that the many-wave mechanism is predominant for both 
reflections. 
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844 V. A. Belyakov and V. E. Dmitrienko 

6. The phase problem 
Many-wave effects in the azimuthal dependences of the intensities and polariza- 

tion properties of reflections can also be used to determine the relative phases of 
different Fourier harmonics 1,. For simplicity, we examine the situation where only 
one many-wave channel is excited, i.e. the case of three-wave diffraction. In this case 
the coefficients in equation ( 5 )  that describes the diffraction from the wave E, into the 
wave E, has the form 

Note that this coefficient depends both on the phase of the triple product e,* * E7-, * 9, 
and on the parameter a, (in particular, on its sign). Let us suppose that the two-wave 
conditions for z reflection is valid: 

r2 + 2k0*7 = 0. 

Then the form of the dependence of a, on cp and the corresponding dependences of 
the intensity and polarization parameters are determined by the geometry of the exact 
three-wave Bragg conditions. If the exact three-wave condition corresponds to the 
vector k, being non-coplanar with the plane formed by t and w then the denominator 
in equation (1 0) depends linearly on cp: 

where cp, is the azimuthal angle of 
I9 - cpo l  4 1. 

for the exact three-wave Bragg condition, and 

00 cp 
Figure 2. Qualitative form of the possible azimuthal dependence of reflection intensity for the 

different phases of the triple products 2: - 2t22r3; Zo is the reflection intensity far from the 
many-wave point. Curves (a) and (b)  correspond to the non-coplanar three-wave Bragg 
condition; curves (c) and ( d )  correspond to the coplanar condition (with the vectors k,, 
t and w lying in the same plane). The dashed lines shown those regions where equations 
( 5 )  are inapplicable. 
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Many-wave optics of blue phases 845 

P I  

1 
I 

QO (P 

Figure 3. Possible azimuthal dependence of the degree of polarization: (a) for coplanar and 
(b) for non-coplanar three-wave diffraction. The dashed line shows the region where 
equations (5) are inapplicable. 

If the exact three-wave Bragg condition (or the closest to it) corresponds to the 
vector ko being coplanar with the plane formed by z and w then the denominator in 
equation (10) is an even function of cp: 

where a$” is the minimum possible deviation from the three-wave point: 

The intensity of the z reflection is obtained from equations (10) and (5) (for example, 
in the framework of dynamical diffraction theory [2]). Typical forms of the azimuthal 
dependence of the reflection intensity are shown in figure 2 .  Since the azimuthal 
dependence of aw is known, we can obtain the phases for all the triple products 
2; i,, - O,, with z, = z2 + z3 (these phases are called the structure invariants). The 
solution of this phase problem is of great importance for the complete determination 
of BP structure [2]. 

The azimuthal dependence of the polarization properties of reflections near the 
many-wave diffraction condition can be found in a similar way. One quantitative 
effect should be noted: for the reflected beam averaged over the polar angle the degree 
of polarization is less than unity and depends on the azimuthal angle cp (see figure 3). 

7. Conclusion 
We have shown that interesting phenomena in BP optics can be observed in the 

case of many-wave diffraction and, moreover, can be used for the delicate structural 
investigations of BPs. Some additional effects should also be noted. In particular, for 
the solution of the phase problem, the experimentally observed many-wave points on 
the Kossel diagrams [18, 191 may be used. It is also worth noting some peculiarities in 
the transmission spectra [20] (kinks and dips at definite wavelengths), which can be 
explained as manifestations of the wavelength thresholds for many-wave diffraction 
in BP polycrystals. The form of the transmission spectra at the thresholds (dip or 
kink) may be connected with the relative phases of the corresponding Fourier har- 
monics of the dielectric tensor. In the light of this discussion, it seems quite reasonable 
that the kink observed at 535 nm in the BPI transmission spectra was attributed [20] 
to the threshold for the three-wave diffraction (A = a d $ ,  z, = (110), z2 = ( O i l ) ) .  
Moreover, the small dip observed at 306nm in the BPI1 spectra [20] may also be 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
0
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



846 V. A. Belyakov and V. E. Dmitrienko 

attributed to the same threshold, but in BPII. In the general case, the three-wave 
diffraction threshold is determined by the expression 

4x12, x Z21 1 =  
1 ~ 1 1 1 ~ 2 l l ~ 1  + Z21’  

where 1 is the wavelength inside the polycrystal sample. 

Note added during revision.-After submission of this paper, we received the work 
[21], where another mechanism (incoherent multiple scattering) had been used for the 
description of (1 11) reflection. We are grateful to R. M. Hornreich for the preprints. 
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